初等数论

来源:百度知道 编辑:UC知道 时间:2024/05/28 08:16:21
1.设p是大于5的质数,证明:p^4 ≡1(mod 240)
提示:可能用到欧拉定理.
2.设p是大于3的质数,证明:a^pb≡b^pa(mod 6p) (a,b为正整数)
提示:可能用到费马定理.
3.求10^10+10^(10^2)+10^(10^3)+...+10^(10^10)被7除的余数.
提示:可能用到欧拉定理.

一共三道题目,谁先做出来分就给谁!明天早上一早我来看!

1.
分解240=3*5*16, phi(3)=2, phi(5)=4,而对于16,使用Carmichael公式,得lambda(16)=4
因为大于5的质数p与3,5,16互质,所以p^2≡1≡p^4(mod 3), p^4≡1(mod 5), p^4≡1(mod 16),即p^4≡1 (mod 3*5*16=240). Q.E.D.
2.
如果题目为求证a^(pb)≡b^(pa),那么应该有问题(可以用a=2,b=5,p=7验证其不正确),如果是(a^p)*b≡(b^p)*a(mod 6p),就可以证明。
首先分解6p=2*3*p,而显然ab*a^(p-1)≡ab*b^(p-1) (mod 2)->可以分别以a≡0,1, b≡0,1来讨论;对mod 3,因为p-1为偶,所以a^(p-1)≡0或1,b^(p-1)≡0或1,于是ab*a^(p-1)≡ab*b^(p-1) (mod 3);再根据Fermat's Little Theorem,a^(p-1)≡b^(p-1),于是ab*a^(p-1)≡ab*b^(p-1) (mod p)。
所以ab*a^(p-1)≡ab*b^(p-1) (mod 2*3*p=6p) Q.E.D.
3.
10≡3(mod 7),而3^6≡1(mod 7);10≡4(mod 6),而4^(任何数)≡4(mod 6)。
所以原题≡10*3^4≡5(mod 7)。

感觉LZ应该会这些题,不是么?:)

明天晚上你再来吧````