大气的温度递减率

来源:百度知道 编辑:UC知道 时间:2024/05/14 09:59:50
它的概念以及相关

对流层的位置约由地面至12公里的高度。在对流层里的气温随着高度增加而降低,大约是每上升1公里下降6.5℃,由于温度的变化大,使得空气不稳定而有对流产生,所有的气象变化均发生在此层中。同温层的位置约由地面12公里至50公里的高度。同温层里的温度变化和对流层相反,是随高度增加而略增,在这层里的空气对流及涡流的情形非常微弱,大气中的臭氧层便在此层的温度随高度的增加而锐减。游离层的位置在离地面80公里以上,空气极为稀薄,并且游离化,此层的温度随高度的增加而上升。

在对流层中,若大气温度随高度而上升,便形成温度分布的反常现象,称之为逆转现象。造成温度逆转的原因有二:第一是因日间太阳照射使地面的温度上升,到了夜间,热能由地面反向转冷的天空辐射使地面冷却,如此便在夜间产生辐射逆转,但在晨间即被破坏。第二是因气团停留在高气压区,空气以极缓慢的速率下降,压缩变热,形成一层遮盖,使空气无法上升,形成温度逆转的现象,称之为沉降逆转。由于接近地面的空气本身就具有较高的气压,所以受此种空气沉降的影响较小,通常沉降逆转只在某一高度形成局部温度逆转。温度逆转现象影响混合层的高度,当空气污染物的排放未能超出混合层高度而上升消散,则污染物将累积于地面附近,使得空气品质迅速变坏,造成灾害。

离地面愈高,大气压力愈低,今以一绝热箱形装置来仿真不同高度下的气压状态,并量取其温度。发现每上升一千公尺高度时,气温大约降低摄氏一度,这种温度随高度直线递减的关系,称为大气绝热递减率。当大气的温度递减率高于绝热递减率--即每升一千公尺,温度下降1℃以上--时称为超热状态,此时由于温度变化过大造成不稳定的气流,对于污染物的消散十分有利,可形成线圈形烟柱,而有效地逸散。反之,当大气的温度递减率低于绝热递减率时(即每升高一千公尺,温度下降1℃以下),称为次绝热状态,此时因温度变化小,气流稳定,污染物较不易消散,烟柱近似锥形。

阳光是地球最大的能量来,源地球表面或大气的温度受吸收阳光的多寡而定。入射的阳光中,仅有21%能直接照射到地面,其余的79%为大气中的云、气体和粒子所拦截。有关地球的能量平衡关系。

由于大气的吸热和地球表面吸热,导致温度
对流层:随高度增加而降低;
平流层:随高度增加而升高;