列出数学中的公理.(保证准确性)

来源:百度知道 编辑:UC知道 时间:2024/06/22 00:10:51
公理!!要公理!~

数学上的公理有很多,你所要问的可能指作为数学基础的东西。我不保证如果只有中学数学知识就可以看懂我写的东西,但我将大致讲讲思想,后面会给出一些知识的来源。

现代数学的大部分,其基础是数理逻辑和公理集合论。它们各自是由一组确定的公理描述的。
数理逻辑中描述了关于逻辑演算的基本规则。其中描述了如(用通俗的话说)“如果A、B两句话都对,那么A就对”等等的一组公理。
公理集合论通常指由著名的ZFC(Zemelo-Fraenkel公理加上选择公理[Axiom of Choice])公理系统定义的集合论。其中描述了如(用通俗的话说)“两个集合的元素相同则集合相等”等等的一组公理。
用上面的公理系统,加上适当的定义和推理,就可以推演出现代数学的大部分内容。
从某种角度上看,所有数学定义都是公理,因为定义就是规定了研究对象的一些性质——而定义甚至不能指出研究对象是存在的。

一个习见的例子是欧几里得几何,也就是中学课本中的几何。可以说它是一组公理推演出来的,但也可以说是一组几何公理定义了什么是几何,定义了什么是点、线、面等几何对象。当然,中学课本用的公理系统并不完善,出于教学的需求,它增加了一些多余的公理(如关于三角形全等的公理,本来只是定理),但省略了一些中学阶段不易理解的公理(如连续性公理,要求了解实数构造)。

再举一个常有人问的例子:自然数是什么?
其实数学上严格定义自然数就是用一组公理来定义的,也就是Peano公理。它的严格表述较繁,你可以参看百度百科(那个解释其实也不是很好,将就吧)。
Peano公理,用通俗的话说,是说自然数必须有个1;然后有了1,后面就一定得有个2,而且只有一个2,以此类推;然后还要有归纳法,或者说从1开始的一个无穷序列必须构成一个集合。
这组公理并没有说明自然数存在,但我们可以把只含一个空集一个元素的集合当成1,然后把1与空集作为两元素的集合当成2,以此类推,构造出确实有这么一个自然数的集合。
在公理的基础上,我们还可以定义加法的运算,并证明它们的运算性质。(顺便说一句,你会发现很多人曾无聊地问过的“1 + 1 = 2”恰是由加法的定义直接保证的)

从上面的例子可能大致窥测一些数学公