相对论产生的背景和意义是什么?

来源:百度知道 编辑:UC知道 时间:2024/04/30 15:35:33
谢谢

背景:

19世纪后期,随着电磁学的发展,电、磁技术得到了越来越广泛的应用,同时对电磁规律的更加深入的探索成了物理学的研究中心,终于导致了麦克斯韦电磁理论的建立。麦克斯韦方程组(见§11-9)不仅完整地反映了电磁运动的普遍规律,而且还预言了电磁波的存在,揭示了光的电磁本质。这是继牛顿之后经典物理学的又一伟大成就。

但是长期以来,物理学界机械论盛行,认为物理学可以用单一的经典力学图像加以描述,其突出表现就是“以太假说”。这个假说认为,以太是传递包括光波在内的所有电磁波的弹性介质,它充满整个宇宙。电磁波是以太介质的机械运动状态,带电粒子的振动会引起以太的形变,而这种形变以弹性波形式的传播就是电磁波。如果波速如此之大且为横波的电磁波真是通过以太传播的话,那么以太必须具有极高的剪切模量, 同时宇宙中大大小小的天体在以太中穿行,又不会受到它的任何拖曳力, 这样的介质真是不可思议。

从麦克斯韦方程组出发,可以立即得到在自由空间传播的电磁波的波动方程(见§11-11),而且在波动方程中真空光速c是以普适常量的形式出现的。但是从伽利略变换的角度看,速度总是相对于具体的参考系而言的,所以在经典力学的基本方程式中速度是不允许作为普适常量出现的。当时人们普遍认为,既然在电磁波的波动方程中出现了光速c,这说明麦克斯韦方程组只在相对于以太静止的参考系中成立,在这个参考系中电磁波在真空中沿各个方向的传播速度都等于恒量c,而在相对于以太运动的惯性系中则一般不等于恒量c。

于是这样的情况出现了:经典物理学中的经典力学和经典电磁学具有很不相同的性质,前者满足伽利略相对性原理,所有惯性系都是等价的;而后者不满足伽利略相对性原理,并存在一个相对于以太静止的最优参考系。人们把这个最优参考系称为绝对参考系,而把相对于绝对参考系的运动称为绝对运动。地球在以太中穿行,测量地球相对于以太的绝对运动,自然就成了当时人们首先关心的问题。最早进行这种测量的就是著名的迈克耳孙-莫雷实验。

图 7-1
迈克耳孙-莫雷实验的装置是设计精巧的迈克耳孙干涉仪(详见§13-3),图7-1是这种仪器的示意图。从光源S射出的一束单色光,经半透明膜G的透射和反射分解为互相垂直的两束光,这两束光各自经历一定长度(l