谁知道为什么N次一元方程在复数域内有N个根

来源:百度知道 编辑:UC知道 时间:2024/05/06 19:55:23

这个是代数基本定理,高斯最早给的证明 我只记得一个在抽象代数书上的证明
证明比较长 思路大概是
1 实系数奇数次方程有实根 (这只要用数学分析中连续函数的介值定理)
2 复系数2次方程有2复根 (配方法就行)
3 实系数方程有复根
证 (粗略的) 次数设为 2^MQ Q为奇数 对M归纳
M=0时 由1 得证
若M>=K时成立
对M=K+1时
G(X)=X^N+A(N-1)X^(N-1)......+A0 (N=2^MQ)
为实域R上多项式
则 在某一拓域F上有N个根(用到域的拓张的知识 如果不懂 可以想象 取X1为
一个字 定义他满足上述方程 讲其加到 R上 得R上拓域记为R(X1) 当然这一点是要证明的 不过涉及知识比较多 理解一下就好 然后 原多项式可分解为 (X-X1)G1(X) 接着继续取G1(X)=0的根X2 得R(X1,X2) 一直做下去 可得 在某1拓域上 G(X)=0有N个根 X1,X2......XN)
设为 X1,X2,......XN 则G(X)=(X-X1)......(X-XN)
对实数C 有 作X-(XI+XJ+CXIXJ) 对每个N>=I>J>=0
将他们全部相乘 得H(X) 则H(X) 为 N(N+1)/2=2^(M-1)Q(N+1)次注意到 Q(N+1)为奇数
再看H(X) 易知 H(X)中每项系数都为 X1,X2......XN在R上的对称多项式 由
对称多项式基本定理 知 每项系数 都能写成
U1,U2......UN的多项式 其中
U1=X1+X2+...XN
U2=X1X2+X1X3+...X1XN+X2X3...X2XN...+XN-1XN
U3=X1X2X3+X1X2X4...XN-2XN-1XN
......
UN=X1X2...XN
由韦达定理(或者说由(X-X1)(X-X2)...(X-XN)=G(X)展开对比系数)知
U1=-A(N-1)
U2=A(N-2)
......
UN=