求最长上升序列动态规划方程的解释

来源:百度知道 编辑:UC知道 时间:2024/05/27 06:16:08
f[i]=max{f[j]+1)(i<j<=n,v[j]<=v[i])
f[n]=1;
其中....帮个忙

有两种算法复杂度为O(n*logn)和O(n^2)

O(n^2)算法分析如下: (a[1]...a[n] 存的都是输入的数)
1、对于a[n]来说,由于它是最后一个数,所以当从a[n]开始查找时,只存在长度为1的不下降子序列;
2、若从a[n-1]开始查找,则存在下面的两种可能性:
(1)若a[n-1] < a[n] 则存在长度为2的不下降子序列 a[n-1],a[n].
(2)若a[n-1] > a[n] 则存在长度为1的不下降子序列 a[n-1]或者a[n]。
3、一般若从a[t]开始,此时最长不下降子序列应该是按下列方法求出的:
在a[t+1],a[t+2],...a[n]中,找出一个比a[t]大的且最长的不下降子序列,作为它的后继。
4、为算法上的需要,定义一个数组:
d:array [1..n,1..3] of integer;
d[t,1]表示a[t]
d[t,2]表示从i位置到达n的最长不下降子序列的长度
d[t,3]表示从i位置开始最长不下降子序列的下一个位置
最长不下降子序列的O(n*logn)算法分析如下:
先回顾经典的O(n^2)的动态规划算法,设A[t]表示序列中的第t个数,F[t]表示从1到t这一段中以t结尾的最长上升子序列的长度,初始时设F[t] = 0(t = 1, 2, ..., len(A))。则有动态规划方程:F[t] = max{1, F[j] + 1} (j = 1, 2, ..., t - 1, 且A[j] < A[t])。
现在,我们仔细考虑计算F[t]时的情况。假设有两个元素A[x]和A[y],满足
(1)x < y < t (2)A[x] < A[y] < A[t] (3)F[x] = F[y]
此时,选择F[x]和选择F[y]都可以得到同样的F[t]值,那么,在最长上升子序列的这个位置中,应该选择A[x]还是应该选择A[y]呢?
很明显,选择A[x]比选择A[y]要好。因为由于条件(2),在A[x+1] ... A[t-1]这一段中,如果存在A[z],A[x] &