C3和C4植物的特点?

来源:百度知道 编辑:UC知道 时间:2024/05/05 17:05:21

C3植物比C4植物光合作用强度更容易达到饱和
C4植物比C3植物光合作用光能利用率高

C3途径是光合碳代谢中最基本的循环,是所有放氧光合生物所共有的同化CO2的途径。
C3途径的总反应式可写成:
3CO2+5H2O+9ATP+6NADPH→GAP+9ADP+8Pi+6NADP+ +3H+(4-36)
? 可见,每同化一个CO2需要消耗3个ATP和2个NADPH,还原3个CO2可输出1个磷酸丙糖(GAP或DHAP),固定6个CO2可形成1个磷酸己糖(G6P或F6P)。形成的磷酸丙糖可运出叶绿体,在细胞质中合成蔗糖或参与其它反应;形成的磷酸己糖则留在叶绿体中转化成淀粉而被临时贮藏。?
2、能量转化效率 以同化3个CO2形成1个磷酸丙糖为例。在标准状态下每形成1mol GAP贮能1460 kJ,每水解1mol ATP放能32 kJ,每氧化1mol NADPH放能220 kJ,则C3途径的能量转化效率为91% 〔1460/(32×9+220×6)〕,这是一个很高的值。然而在生理状态下 ,各种化合物的活度低于1.0,与上述的标准状态有差异,另外,要维持C3光合还原循环的正常运转,其本身也要消耗能量,因而一般认为,C3途径中能量的转化效率在80%左右。?

C4植物
自20世纪50年代卡尔文等人阐明C3途径以来,曾认为光合碳代谢途径已经搞清楚了,不管是藻类还是高等植物,其CO2固定与还原都是按C3途径进行的。即使在1954年,哈奇(M.D.Hatch)等人用甘蔗叶实验,发现甘蔗叶片中有与C3途径不同的光合最初产物,亦未受到应有的重视。直到1965年,美国夏威夷甘蔗栽培研究所的科思谢克(H.P.Kortschak)等人报道,甘蔗叶中14C标记物首先出现于C4二羧酸,以后才出现在PGA和其他C3途径中间产物上,以及玉米、甘蔗有很高的光合速率时,才引起人们广泛的注意。澳大利亚的哈奇和斯莱克(C.R.Slack)(1966~1970)重复上述实验,进一步地追踪14C去向,探明了14C固定产物的分配以及参与反应的各种酶类,于70年代初提出了C4-双羧酸途径(C4-dicarboxylic acid pathway),简称C4途径,也称C4光合碳同化循环(C4 photosynthet