黑洞的内部结构是什么

来源:百度知道 编辑:UC知道 时间:2024/06/15 11:31:09

黑洞是广义相对论所预言存在的一类特殊天体,实验上也已经发现它存在的迹象.那么,黑洞的内部究竟是一幅怎样的图景呢 黑洞的定义本身自然排除了利用光速通信来探测其内部的可能性.由于黑洞内部的时空极度弯曲,任何物理信号(包括光信号)都无法从黑洞中逃逸出来,粒子在黑洞内部只能向黑洞的中心运动,别无选择.然而,如果黑洞真的存在,那么它的内部就应当是可探测的,而不应是永远无法触及的禁地.下面我们将说明,利用量子超距通信(即量子超光速通信)可以探测黑洞的内部.
我们知道,量子超距通信是一种非连续,非定域的通信方式,信息的传递不经过空间.即使黑洞不允许连续传播速度最大的光信号从内部穿越视界而出,它却无法阻挡非连续的超距信号.超距通信只与收发两地的局部时空情况有关,而与其间的时空结构无关.即使其间存在无穷大势垒,超距通信也可以进行,更不用说黑洞的有限视界.理解这个结论的另一种简单方法是,将超距信号看作是具有无穷大速度的信号.根据广义相对论,尽管速度小于等于光速的信号无法从黑洞内部出来,但是具有无穷大速度的信号却可以.原则上,利用超距通信可以探测黑洞内部的所有区域.考虑到量子坍缩过程的影响,实现超距通信的纠缠粒子对的初始能量越小,就越容易探测到黑洞的中心区域.
由于黑洞内外的时空度规(相对于本地的自由落体参照系)都是有限的,黑洞内外区域之间的时间流逝是可比较的.例如,在黑洞视界内外附近的两个自由下落的参照系几乎是相同的.因此,同时处于黑洞内外的粒子纠缠态的坍缩过程在各自的局域参照系内都将在有限的时间内完成.于是,超距通信的信息发送(对应于黑洞内部的粒子态的量子坍缩)和信息接收过程(对应于黑洞外部的粒子态的量子坍缩)都可以在有限的时间内完成.此外,我们必须注意,在黑洞内外超距传递的信息与粒子间相互纠缠的量子性质(如自旋)有关,而这种性质一般会受时空弯曲的影响.例如,粒子自旋的方向将受时空弯曲的影响,而两个自旋关联的粒子经过不同的弯曲时空后(如分别在黑洞内外)其关联的自旋方向将发生改变.然而,由于时空弯曲对自旋方向(和其它性质)的改变总是确定的,我们总可以通过实验重新测定自旋关联的方向.因此,时空弯曲只是影响,而并不会破坏超距通信所依据的量子关联.
基于超距通信,黑洞内外的时间流逝将成为实际可比较的.一个直接结果是,利用这种超距通信外部观察者可以看见