已知f(x)=2x2+bx+c/x2+1(b<0)的值域为【1,3】,求实数b,c的值

来源:百度知道 编辑:UC知道 时间:2024/05/14 17:14:11
要详细解法

(1) 因为y=f(x)=(2x^2+bx+c)/(x^2+1)的定义域为R.
所以2x^2+bx+c=yx^2+y
整理得(2-y)x^2+bx+(c-y)=0
当y=2时,x=(2-c)/b.
因为b<0,所以成立.
当y≠2时,
Δ=b^2-4(2-y)(c-y)=-4y^2+(8+4c)y+(b^2-8c)≥0.
由题意,1,3为该方程的两根。
所以,
1+3=-(8+4c)/-4…①
1*3=(b^2-8c)/-4…②
由①②解得:b=-2(正值舍去),c=2.

因为y=f(x)=(2x^2+bx+c)/(x^2+1)的定义域为R.
所以2x^2+bx+c=yx^2+y
整理得(2-y)x^2+bx+(c-y)=0
当y=2时,x=(2-c)/b.
因为b<0,所以成立.
当y≠2时,
Δ=b^2-4(2-y)(c-y)=-4y^2+(8+4c)y+(b^2-8c)≥0.
由题意,1,3为该方程的两根。
所以,
1+3=-(8+4c)/-4…①
1*3=(b^2-8c)/-4…②
由①②解得:b=-2(正值舍去),c=2.