1+1/(1+2)+1/(1+2+3)+……+1/(1+2+3+…+n)(n为自然数)

来源:百度知道 编辑:UC知道 时间:2024/05/24 21:26:17
1+1/(1+2)+1/(1+2+3)+……+1/(1+2+3+…+n)(n为自然数)
=?

1/(1+2+...+n) = 2/(n)(n+1) = 2[1/n - 1/(n+1)]

1+1/3+1/6+1/10+1/15+。。。。。+1/1+2+3+。。。+n
=2 (1/1-1/2+1/2-1/3+1/3-1/4 + ...+1/n-1/n+1)
=2 [1-1/(n+1)]
=2n/(n+1)

由 1+2+3+…+n=n(n+1)/2
得 1/(1+2+3+…+n)=2/n(n+1)=2/(1/n - 1/(n+1))

1+1/(1+2)+1/(1+2+3)+……+1/(1+2+3+…+n)
=2/(1/1 - 1/(1+1)) + 2/(1/2 - 1/(2+1))+...+2/(1/n - 1/(n+1))
=2/(1/1 - 1/(n+1))
=2n/(n+1)

我们可以令An=1+2+3+…+n=n(n+1)/2
则原式=2(1+...+1/(n-1)n+1/n(n+1))
而1/n(n+1)=1/n-1/(n+1)
即原式=2(1-1/(n+1))

1+2+……n=n(n+1)/2
1+1/(1+2)+1/(1+2+3)+……+1/(1+2+3+…+n)
=2/(1*2)+2/(2*3)+……+2/[n(n+1)]
1/n(n+1)=1/n-1/(n+1)
2/(1*2)+2/(2*3)+……+2/[n(n+1)]
=2[1-1/2+1/2-1/3+……+1/n-1/(n+1)]
=2[1-1/(n+1)]

由于1+2+3+4+......+(n-1)+n=(1+n)*n/2;
所以1/[1+2+3+4+......+(n-1)+n]=2/[n*(n+1)]=2*[(1/n)-1/(n+1)];
所以原式变为:2*{(1-1/2)+(1/2-1/3)+(1/3-1/4)+......+[(1/n)-1/(n+1)]}
=2*[1-1/(n+1)];

S=1+1/(1+2)+1/(1+2+3)+...+1/[n(n+1)