高一数列证明题

来源:百度知道 编辑:UC知道 时间:2024/05/15 02:03:43
已知函数f(x)=(x+3)/(x+1)(x≠-1),设数列{An}满足A1=1,A(n+1)=f(An),数列{Bn}=| An-√3 |,Sn=B1+B2+……+Bn(n为正整数)
(1)用数学归纳法证明Bn<=[(√3 - 1 )^n]/2^(n-1)
(2)证明Sn<2√3/3

证明:
1.(1)n=1时,B1=|A1-√3|=√3-1
(√3-1)^n/2^(n-1)=√3-1 命题成立。
(2)假设n=k时,命题成立,即有Bk=|Ak-√3|<=(√3-1)^k/2^(k-1) 成立
则B(k+1)=|A(k+1)|=|(Ak+3)/(Ak+1)+1-√3|=|2/(Ak+1)+1-√3|
由 |Ak-√3|<=(√3-1)^k/2^(k-1) 成立,得:
-(√3-1)^k/2^(k-1)<=Ak-√3<=(√3-1)^k/2^(k-1)
【接下来不等式变换,目的是凑成B(k+1)的表达式,不等式三边同加√3+1,再倒数(注意不等号变向),再乘以2,再加 上1-√3,以上都是基本功,不过楼主须耐心计算,】最后约掉2^k,得到下式:
-(√3-1)^(k+1)/[(√3+1)*2^(k-1)+(√3-1)^k]<=2/(Ak+1)+1-√3<=(√3-1)^(k+1)/[(√3+1)*2^(k-1)-(√3-1)^k]
加上绝对值,得:
(√3-1)^(k+1)/[(√3+1)*2^(k-1)+(√3-1)^k]<=|2/(Ak+1)+1-√3|<=(√3-1)^(k+1)/[(√3+1)*2^(k-1)-(√3-1)^k]
即:
(√3-1)^(k+1)/[(√3+1)*2^(k-1)+(√3-1)^k]<=B(k+1)<=(√3-1)^(k+1)/[(√3+1)*2^(k-1)-(√3-1)^k]
【比较所要证明的式子,现在只要证明(√3+1)*2^(k-1)-(√3-1)^k>=2^k就可以了】
令t=(√3+1)*2^(k-1)-(√3-1)^k-2^k
=2^k/(√3-1)-2^k-(√3-1)^k
=2^k[1/(√3-1)-1]-(√3-1)^k
(i)k=1时,显然t>=0,即(√3+1)*2^(k-1)-(√3-1)^k>=2^k成立
(ii)k>=2:因为1/(√3-1)-