电磁耦合原理及公式

来源:百度知道 编辑:UC知道 时间:2024/06/08 16:51:36
定子与转子如何产生感应电压

磁铁和电流都能够产生磁场,电流的磁场是由电荷的运动形成的,那么磁铁的磁场是如何产生的呢?法国学者安培根据环形电流的磁性与磁铁相似,提出了著名的分子电流的假说。他认为,在原子、分子等物质微粒内部,存在着一种环形电流——分子电流,分子电流使每个物质微粒都成为一个微小的磁体,它的两侧相当于两个磁极。这两个磁极跟分子电流不可分割地联系在一起。安培的假说,能够解释各种磁现象。一根软铁棒,在未被磁化的时候,内部各分子电流的取向是杂乱无章的,它们的磁场互相抵消,对外界不显磁性。当软铁棒受到外界磁场的作用时,各分子电流的取向变得大致相同,软铁棒就被磁化了,两端对外界显示出较强的磁作用,形成磁极。磁体受到高温或者受到猛烈的敲击会失去磁性,这是因为在激烈的热运动或机械运动的影响下,分子电流的取向又变得杂乱了。在安培所处的时代,人们对原子结构还毫无所知,因而,对物质微粒内部为什么会有电流是不清楚的。直到20世纪初期,人类了解了原子内部的结构,才知道分子电流是由原子内部的电子的运动形成的。安培的磁性起源的假说,揭示了磁现象的电本质。它使我们认识到,磁铁的磁场和电流的磁场一样,都是由电荷的运动产生的。
但是仅凭“电荷运动产生磁场”还不足以说明以下三个问题:1.运动电荷周围的磁场为何其磁力线方向符合右手螺旋法则而不是左手螺旋法则?2.通电直导线周围有环形磁场,为何磁力线方向也符合右手螺旋法则而不是左手螺旋法则?3.原子磁矩如何确定N极和S极?唯一的解释只能是“电荷运动时自旋”,自旋产生磁场,磁力线方向与自旋方向有关。“电荷运动时自旋”这一判断虽然是来自于推理,但能够解释一切电磁现象,下面一一讲述:

一、电生磁
电荷静止时不自旋,只产生电场,不产生磁场。
电荷运动时自旋,并在周围产生环形磁场。正电荷运动时的自旋方向和磁场方向为:右手半握,拇指伸开,拇指指向正电荷前进方向,其余四指就指向自旋方向,磁力线方向与自旋方向相同。负电荷运动时的自旋方向和磁场方向为:左手半握,拇指伸开,拇指指向负电荷前进方向,其余四指就指向自旋方向。磁力线方向与自旋方向相反。
通有直流电流的直导线中,电子排着队向前运动,因电子自旋的作用,导线周围有环形磁场。电子自旋方向和磁场方向为:左手半握,拇指伸开,拇指指向负电荷前进方向,其余四指就指向自旋方向,磁力