细讲主动式四轮转向

来源:百度知道 编辑:UC知道 时间:2024/06/01 06:01:55
主动式四轮转向,当车向左拐的时候,后轮向那边偏?

以往的汽车四轮转向控制系统的设计,往往依据侧向加速度较小时的车辆运动的线型两轴模型进行线性控制器的设计。这样在某些危险行驶状态,例如紧急躲避障碍物、在路面摩擦力低的滑路面行驶,汽车四轮转向控制系统将失去应有的控制作用,致使汽车的转向安全性大大减低。文章提出在侧向加速度大的情况下,利用神经网络理论来设计汽车四轮转向控制系统。这样的控制系统不依赖于车辆运动的线型模型,它不是基于模型的控制,而是基于知识的控制,保证了控制系统能适应车辆运动的非线性特性。 2 基于神经网络四轮转向控制系统的设计 [IMG]image/040916guonew13-1.gif[/IMG] [IMG]image/040916guonew13-2.gif[/IMG] 四轮转向控制系统的控制目的应为:(1)对沿行驶路线行驶的汽车车身姿势进行控制,使汽车的侧偏角β保持为零;(2)横摆角速度λ或侧向加速度。接近所期望的转向响应特性。四轮转向控制系统采用后轮主动式,即控制器主动控制后轮的转角,通过控制后轮进行车辆运动控制。其控制系统如图1所示。在设计过程中,参两轮车的线性模型,选前轮转向角6f、横摆角速度/作为控制器的输入量;同时考虑侧向加速度α而造成的控制误差的补偿作用,把侧向加速度。也作为输入。图1中车辆系统为通过神经网络辩识的非线性动态系统。设计包括两部分内容:车辆动态模型离线辩识、后轮转向角神经网络控制器的设计. 2.1 车辆动态模型离线辩识 车辆动态模型离线辩识采用多层神经网络误差逆传播学习算法:BP神经网络法.BP神经网络是一种输入输出向量空间的非线性映射。其拓扑结构由3部分组成:输入层、隐含层和输出层。层与层之间各神经元实现全连接,而每层各神经元之间无连接。设计中采用具有双隐含层的BP网络,通过离线训练学到车辆动力系统的非线性特性。为使该网络能在车辆的各种工况下识别车辆运动,应使网络的学习模式对能覆盖车辆的全部工况。由于采集实际车辆的运行数据是非常困难的,因此在离线训练的过程中,采用四轮转向车辆系统模型,并通过计算机仿真(图2)向BP网络提供学习模式对,使BP网络进行离线训练学习,对BP网络的连接权和阈值进行粗调节;然后通过该模式提取测试模式对,对网络进行测试;测试满意后,再用实验数据对网络作进一步离线训练,从而对网络进行细调节。辩