函数极限不存在有哪几种情况?

来源:百度知道 编辑:UC知道 时间:2024/05/15 20:19:07

极限不存在大致可以分为三种情况:
1.极限为无穷,很好理解,明显与极限存在定义相违;
2.左右极限不相等,例如分段函数;
3.没有确定的函数值,例如lim(sinx)从0到无穷,但要注意,sinx是有界的。。。
我这样理解的,希望对你有帮助。。。

不能证明存在 就可以反证不存在了
简单啊

柯西极限存在准则又叫柯西审敛原理,给出了数列收敛的充分必要条件。

数列收敛的充分必要条件是:对于任意给定的正数ε,存在着这样的正整数N,使得当m>N,n>N时就有
|Xn-Xm|<ε

这个准则的几何意义表示,数列收敛的充分必要条件是:对于任意给定的正数ε,在数轴上一切具有足够大号码的点Xn中,任意两点间的距离小于ε .

充分性:Cauchy列(基本列)收敛
证明:
1、首先证明Cauchy列有界
取e=1,根据Cauchy列定义,取自然数N,当n>N时有c
|a(n)-a(N)|<e=1
由此得:
|a(n)|=|a(n)-a(N)+a(N)|<=|a(n)-a(N)|+|a(N)|<1+|a(N)|
(通俗理解,a(n)无论怎么样也大不过a(N)绝对值加1,显然根据经验这是有界的。但数学里需要严格的表达,下面因为N前的N-1个项,有最大值,所以得出了有界).
令:
M=Max{|a(1),a(2),……,|a(N)|,|a(N)|+1}
这样就证明了,对于任何n都有a(n)<=M。
所以Cauchy列有界。

2、其次在证明收敛
因为Cauchy列有界,所以根据Bozlano-Weierstrass定理(有界数列有收敛子列)存在一个子列aj(n)以A为极限。那么下面就是要证明这个极限A也就是是Cauchy列的极限。(注意这种证明方法是实数中常用的方法:先取点性质,然后根据实数稠密性,考虑点领域的性质,然后就可以证明整个实数域的性质了)
因为Cauchy列{a(n)}的定义,对于任意的e>0,都